
1
www.JavaJee.com

CH-07 - Actions – XML - EL

1. What are Standard actions?

a. Standard actions are used for the same purpose as Java language-based scripting:

Most things we can achieve with standard actions are achievable with other

scripting elements. However they are written using entirely conventional XML

syntax. They can be used by the nonprogrammer to introduce dynamic behavior

that would otherwise entail Java language knowledge.

b. Both standard and custom actions are similar in appearance: XML elements that

encapsulate functionality on a JSP page. The difference is that you can rely on

any J2EE-compliant JSP container to provide support for all the standard actions

defined in the JSP spec. Not so custom actions, because they are customized for

your web applications.

2. Is it necessary for the java objects that need to be used by standard actions to follow

JavaBeans specification?

a. Yes. Java objects come in many shapes and sizes, so standard actions can work

only if those objects obey at least some minimal conventions. The idea of

JavaBeans is that you can have Java components (typically classes) that can be

interrogated by interested software, using the reflection techniques. By

interrogating the methods available on a JavaBean, a standard action can obtain

information about the properties that the bean supports—in other words, the data

that it stores.

3. Give the general syntax of actions?

a. The general syntax of actions, whether standard or custom:

<prefix:tagname firstAttribute="value" secondAttribute="value"> ...

</prefix:tagname>

Each standard action element consists of a start tag, <prefix:tagname>,

and an end tag of the same name, </prefix:tagname>. The start tag may

contain named attributes, separated from their corresponding value by

equal signs. The value is typically surrounded by double quotes or by

single quotes. A standard action may have a body, but it often has no body

at all.

2
www.JavaJee.com

4. The prefix for all standard actions is ……….

a. Jsp

5. List down all the standard actions with the jsp prefix?

a. The standard actions are:

i. jsp:attribute

ii. jsp:body

iii. jsp:element

iv. jsp:fallback

v. jsp:forward

vi. jsp:getProperty

vii. jsp:include

viii. jsp:output

ix. jsp:param

x. jsp:params

xi. jsp:plugin

xii. jsp:setProperty

xiii. jsp:useBean

6. The ………. standard action declares a JavaBean instance and associates this with a

variable name.

a. <jsp:useBean>

7. Describe the use of <jsp:useBean> standard action?

a. The <jsp:useBean> standard action declares a JavaBean instance and associates

this with a variable name. The instance is then available for use elsewhere in your

JSP page: either in Expression Language, other standard actions, or even in Java

language scripting.

b. Eg. <jsp:useBean id="theDog" class="animals.Dog" />

i. The class attribute must specify the fully qualified name of a class.

ii. animals.Dog must obey JavaBean conventions.

iii. animals.Dog must be visible somewhere in the web application—mostly

this means it will exist as a class in WEB-INF/classes or within a JAR file

in WEB-INF/ lib.

3
www.JavaJee.com

iv. All ids for beans on a page must be unique.

8. Give two standard actions to write and read properties on our bean set up using the

<jsp:useBean> standard action?

a. <jsp:setProperty> and <jsp:getProperty>

9. How will the jave code in _jspService() reference the object created by <jsp:useBean>

tag ?

a. In two ways:

i. As a local variable in the method, whose name comes from value of the id

attribute.

ii. As an attribute in some scope or other—page, request, session, or

application. If we don’t specify the scope, it will be page scope.

b. Eg. <jsp:useBean id="theDog" class="animals.Dog" />

i. theDog becomes a local variable.

ii. In this case, theDog is the name of the attribute.

10. What will be the scope of the attribute created by <jsp:useBean> ? Can we specify the

attribute scope?

a. If we don’t specify the scope, it will be page scope. We can specify the scope as

below:

i. <jsp:useBean id="theDog" class="animals.Dog" scope="session" />

1. The valid values for scope are page, request, session, and

application.

b. Specifying the scope attribute creates or uses an attribute in the specified session

and make it available as a local variable in the page scope with that name.

11. When we use <jsp:useBean> to create an attribute in one scope and another attribute with

same name is already available in that scope, what will happen?

a. The jsp:useBean> recycles the existing bean; it doesn’t create a new one.

12. An attribute of <jsp:useBean> that offers possibility of using a serialized bean from your

file system?

a. beanName

13. Describe the basic use of <jsp:setProperty>?

4
www.JavaJee.com

a. The purpose of <jsp:setProperty> is to set the values of one or more properties on

a bean previously declared with <jsp:useBean>. The property attribute specifies a

property on the bean.

b. Attributes of <jsp:setProperty> standard action are name, property, param, value.

The name is the name of the bean; property is the property for which we need to

assign the value. If we need to set the value of a request parameter, then we can

use param attribute instead of value and give a valid request parameter as the

value of the param attribute.

c. Eg: <jsp:setProperty name="theDog" property="weight" value="6.4" />

i. Because the property here is “weight,” then the underlying code will

assume the existence of a setWeight() method on the theDog bean.

ii. The value attribute supplies the data for the property — or in code terms,

the parameter that is passed into the setter method. Instead of supplying a

literal value, you can even substitute an expression. But this feature is not

available to any other attributes.

1. <% float w = 6.4f; %>

2. <jsp:setProperty name="theDog" property="weight"

value="<%=w%>" />

14. Can we use <jsp:setProperty> and <jsp:getProperty> without a previous <jsp:useBean>

in a page?

a. We can use <jsp:setProperty> and <jsp:getProperty> without a previous

<jsp:useBean> if an attribute of the right name exists in the PageContext.

b. However, it’s good practice to include <jsp:useBean> before these actions in the

same JSP page. After all, it won’t replace beans of the same name that you have

set up by other means, and it will create beans of the right name that don’t exist

already.

15. Why is it a good practice to include <jsp:useBean> before <jsp:setProperty> and

<jsp:getProperty> even if it will work otherwise if an attribute of the right name exists in

the PageContext?

5
www.JavaJee.com

a. Because <jsp:useBean> won’t replace beans of the same name that you have set

up by other means, and it will create beans of the right name that don’t exist

already.

16. If your <jsp:setProperty> and <jsp:getProperty> standard actions try to access an attribute

that doesn’t exist, what will happen?

a. If your <jsp:setProperty> and <jsp: getProperty> standard actions try to access an

attribute that doesn’t exist, they will fail with HTTP 500 errors returned to the

requester.

17. Describe : <jsp:setProperty name="theDog" property="weight" param="dogWeight" />.

a. This is shorthand for saying take the request parameter called “dogWeight,” and

use the value for this to set the property called “weight” on the bean called

“theDog.” This is equivalent to:

i. <jsp:setProperty name="theDog" property="weight" value="<%=

request.getParameter("dogWeight") %>" />

18. What will be the value of the property weight in : <jsp:setProperty name="theDog"

property="weight" /> ?

a. The underlying code will look for a parameter (from the ServletRequest or

HttpServletRequest) called “weight” and use this to set the property value for

“weight” on “theDog.”

19. Describe : <jsp:setProperty name="theDog" property="*" /> ?

a. Any property whose name matches a request parameter name will have its value

preloaded from that request parameter.

20. Describe <jsp:getProperty> ?

a. You use it to output the value of a bean’s property to the response. There are two

attributes to supply: name (the name of the bean) and property (the name of the

property). They’re both mandatory.

i. <jsp:getProperty name="theDog" property="weight" />

21. The standard action ………. can be used to include the response from another file within

your JSP page output.

a. <jsp:include>

6
www.JavaJee.com

22. Can we use <jsp:include> to include files that don’t exist at the point where you deploy

your including pages?

a. You might use <jsp:include> to include files that don’t exist at the point where

you deploy your including pages. There’s no check on the existence of the page

specified in <jsp:include> during the translation phase.

b. However you’ll get a run-time error if you let your users access JSPs that try to

include a page that doesn’t exist. So we should introduce controls that prevent

access to the including JSP until the files needed for inclusion are actually present

in your web application directory structure.

23. Can we include an external file outside the web application using the <jsp:include>

standard action?

a. No.

24. Can we include non-jsp files using the <jsp:include> standard action?

a. Yes. You can include any file of any MIME type.

25. Is this legal: <jsp:include page='<%= request.getParameter("thePage") %>' />. Explain.

a. Yes. This is possible because <jsp:include> runs at request time.

26. What is the importance of the flush attribute of the <jsp:include> standard action?

a. JSP page output is buffered as a rule—not immediately committed to the

response. If you set the flush value to “true,” this has the effect of fl ushing the

buffer in the including page (i.e., committing the response so far) before anything

is done about including the target page.

27. Can we have the below line in an included JSP page:

<% response.setHeader("Date", utcFormatDate); %>

a. It will be simply ignored in the included JSP page. Included pages can’t do

anything to the response header similar to the way servlets can’t if anything has

been written to the response. The assumption is that somewhere along the chain to

the included page, some part of the response has been written. Even if you set the

flush attribute to “false,” and both the including and included page have unfilled,

unflushed buffers, there are still restrictions on included pages. A servlet that has

been included from another servlet by a RequestDispatcher object is treated in the

same way.

7
www.JavaJee.com

28. Differentiate between <jsp:include> Standard Action and <%@ include %> Directive?

a. <jsp:include> Standard Action

i. Attributes: page (and flush)

ii. Response from target page included at request time.

iii. Target page to include can be soft-coded as an expression.

iv. Can execute conditionally in the middle of page logic.

v. Target page doesn’t have to exist until request time.

vi. Always includes the latest version of the target page.

b. <%@ include %> Directive

i. Attribute: file

ii. Target file included during translation phase.

iii. Target file must be a hard-coded literal value.

iv. Will be processed unconditionally—can’t be embedded in page logic.

v. Target file must exist at translation time.

vi. Does not necessarily include the latest version of the target file: depends

on your container (not mandated by the JSP specification).

29. Describe the use of <jsp:forward> standard action?

a. The purpose of this standard action is to forward processing to another resource

within the web application. There is only one mandatory attribute, which is

page="URL." The JSP specification says that a “<jsp:forward> effectively

terminates the current page,”. Therefore any line after “<jsp:forward> won’t be

executed.

30. List down the cases where you might get IllegalStateException when using

<jsp:forward> ?

a. The IllegalStateException will be thrown if any part of the response has already

been committed and we try to use <jsp:forward>. Below are few specific cases:

i. There is no buffer, and even one character has been written to the

response.

ii. The buffer has been explicitly flushed (response.flushBuffer()).

iii. The buffer has been automatically flushed on filling up (in a JSP, this will

happen by default).

8
www.JavaJee.com

31. While including or forwarding, can we add in additional parameters to the request?

a. Yes. For this, we can use the <jsp:param> standard action and include it in the

body of a <jsp:include> or <jsp:forward>.

32. Give a reason for including a body in <jsp:include> or <jsp:forward>?

a. We can use the <jsp:param> standard action to add additional parameters to the

request and include it in the body of a <jsp:include> or <jsp:forward>.

33. While using the <jsp:param> standard action to add additional parameters to the request

using along with < jsp:include> or <jsp:forward> what will be the lifetime of those

variables?

a. They only last for the duration of the include or forward. Once you’re back in the

including or forwarding JSP page, the parameters disappear.

34. While using the <jsp:param> standard action to add additional parameters to the request

using along with < jsp:include> or <jsp:forward> what will happen if there are variables

with the same name?

a. They don’t replace existing parameters of the same name—they merely augment

the list of values. (Parameters—unlike attributes—can have multiple values for

the same name.) When they do augment the list of values, their values come at the

front of the list.

35. Describe the use of <jsp:attribute> standard action?

a. The jsp:attribute element allows you to define the value of a tag attribute in the

body of an XML element instead of in the value of an XML attribute.

i. <jsp:attribute name="attributeName" [trim= "true | false"] />

b. All JSP standard actions and custom actions can contain a jsp:attribute standard

element as a substitute for any of its attributes. One use case in which jsp:attribute

is particularly helpful is where the value of an attribute is the result of a multi-line

expression, which would not fit in the value of an attribute in the start tag of the

action.

c. If an action contains any jsp:attribute elements and the action also has a body, it

must use the jsp:body tag to represent the body.

36. What is a JSP document?

9
www.JavaJee.com

a. It’s JSP page source that’s written in XML. Quite often, you use a JSP document

to produce XML as well.

37. List few reasons for moving to XML-style page source for JSPs?

a. If you have an XML fi le you want to produce, it can immediately become the

template text for a piece of JSP Page Source—all that remains is to mark it up

with some more XML for the dynamic parts.

b. You can check that your page source is valid in XML terms, using proper XML

validators. If you use XML-authoring tools (such as XML Spy), then those same

tools can handle the production and validation of your JSP page source as well as

other XML fi les you write.

c. Arguably, XML-style source is easier to write and read than a mishmash of

template text and Java language.

d. Many newer, trendier tool developments use the new xml based syntax.

38. Give the XML based syntax for <% ... %>?

a. <jsp:scriptlet>... </jsp:scriptlet>

39. Give the XML based syntax for <%= ... %>?

a. <jsp:expression>... </jsp:expression>

40. Give the XML based syntax for <%! ... %>?

a. <jsp:declaration>... </jsp:declaration>

41. Give the XML based syntax for scriptlets?

a. <jsp:scriptlet>... </jsp:scriptlet>

42. Give the XML based syntax for expressions?

a. <jsp:expression>... </jsp:expression>

43. Give the XML based syntax for declarations?

a. <jsp:declaration>... </jsp:declaration>

44. Give the XML based syntax for <%@ page attr=“value” %>?

a. <jsp:directive.page attr=“value” />

45. Give the XML based syntax for <%@ include file=“abc.txt” %>?

a. <jsp:directive.include file=“abc.txt” />

46. Give the XML based syntax for <%@ taglib prefix= “abc” uri="...” %>?

a. xmlns:abc="...”

10
www.JavaJee.com

47. Give the XML based syntax for page directive?

a. <jsp:directive.page attr=“value” />

48. Give the XML based syntax for include directive?

a. <jsp:directive.include file=“abc.txt” />

49. Give the XML based syntax for taglib directive?

a. xmlns:abc="...”

50. Give the JSP based and XML based syntax for comments?

a. Exclude from translation (and output)

i. JSP Based old syntax

1. <%-- ... --%>

ii. XML Syntax

1. <!-- ... -->

b. Include HTML comment in HTML output

i. JSP Based old syntax

1. <!-- ... -->

ii. XML Syntax

1. <!-- ... -->

51. How can you handle special characters like ‘<’ ans ‘>’ inside <jsp:scriptlet> element?

a. You have two options to deal with this.

i. The first is to escape the source code, using as an xml “entity”—beginning

with an ampersand (&) and ending in a semicolon (;).

1. < sign is replaced with the entity <.

2. > sign is replaced with the entity >

b. The second option is to mark up the offensive part as XML character data.

i. <jsp:scriptlet>for (int i = 20; i <![CDATA[<]]> 30; i ++) {</jsp:scriptlet>

or,

ii. <jsp:scriptlet><![CDATA[for (int i = 10; i < 20; i ++) {]]></jsp:scriptlet>

52. If you have some content that needs to be placed in the “no-man’s land” of a bodiless tag,

then wrap it up with ………

a. <jsp:text> ... </jsp:text>.

11
www.JavaJee.com

53. For using a standard action in a JSP document do we need to specify the namespace for

the JSP prefix?

a. Yes. The <jsp:directive.page> element can contain an additional attribute like:

i. <jsp:directive.page xmlns:jsp=http://java.sun.com/JSP/Page

contentType="text/html" />

b. In our example above, the namespace is associated only with

<jsp:directive.page>. Here is the same example again with the namespace

transferred to <html>, the root element for XHTML documents:

i. <html xmlns:jsp="http://java.sun.com/JSP/Page" >

ii. <head><title>Namespaces</title></head>

iii. <jsp:directive.page contentType="text/html" />

Now any standard action can be used anywhere in the document without repeating

the namespace, for it’s available throughout—the prefi x jsp: is suffi cient.

54. Can we have XML based syntax in a normal JSP page?

a. You can include as much or as little of the XML syntax in a normal JSP page as

you like—this is to encourage you to migrate your JSP pages to XML syntax at a

pace to suit.

55. Is a page written in bona fide XML a JSP document and will be treated as such?

a. No. The page will continue to work, but the JSP container is likely to treat it as a

standard syntax page, unless you tell in some way that it is a JSP document.

56. How can you make sure the container identifies a page as a JSP document?

a. There are three approaches that identify a page as a JSP document:

i. Ensure that your web application deployment descriptor web.xml is at

version level 2.4 and that the file with your JSP page source has the

extension .jspx.

ii. Ensure that your web application deployment descriptor web.xml is at

version level 2.4, and include some appropriate settings in deployment

descriptor’s <jsp-config> element. Here’s an example configuration:

1. <jsp-config>

2. <jsp-property-group>

3. <url-pattern>/jspx/*</url-pattern>

12
www.JavaJee.com

4. <is-xml>true</is-xml>

5. </jsp-property-group>

6. </jsp-config>

This says that any for any file accessed with a URL ending in /jspx

/anythingatall.any within the web application, treat this as a JSP

document. The <is-xml> element takes two valid values: true (treat these

as JSP documents with XML syntax) or false (treat these documents as

JSP pages with standard syntax). The <url-pattern> element works in just

the same way we saw within the <servlet-mapping> element

iii. Enclose your page source with the root element <jsp:root>. This element

is backward-compatible with previous versions of the JSP container, so it

doesn’t rely on a particular version level for web.xml.

1. <jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

57. List two advantages for using <jsp:root> element for making a file a JSP document?

a. If you need to remain compatible with older containers, or older applications in

newer containers, this will work. An older-style web.xml won’t matter.

b. If your source files can’t have the .jspx extension for some reason, and if their

URL patterns are too diverse to warrant defining inside the <jsp-config> element.

58. In a JSP document, by default an XML header statement appears at the very beginning of

the page output, looking like this: <?xml version="1.0" encoding="UTF-8"?>. If what

you’re producing is not XML, how can you suppress this?

a. There are a couple of approaches:

i. Use <jsp:root> as your root element. This suppresses the XML header

statement by default (if you’re using <jsp:root> for some other reason,

there are ways to retain the XML header statement if you actually need it).

ii. Include a <jsp:output> element as follows: <jsp:output omit-

xmldeclaration=" true" />.

59. By default, a JSP document wants to produce XML. Is it dependent on the MIME type?

a. No. This is regardless of the MIME type that you set with <jsp:directive.page

contentType="..." />.

60. What is the importance of EL in Java?

13
www.JavaJee.com

a. Expression Language (EL) is all about the EL-imination of Java syntax from your

pages. The EL can be used to easily access data from the JSP pages. The EL

simplifies writing script-less JSP pages that do not use Java scriptlets or Java

expressions and thus have a more controlled interaction with the rest of the Web

Application. Expression Language provides an alternative to the expression aspect

of Java language scripting—<jsp:expression>...</jsp: expression> or <%...%> .

EL by itself is not a replacement for scriptlets.

61. Why is EL used most often in conjunction with JSTL?

a. Expression Language began life as part of the JSP Standard Tag Library (JSTL).

EL is now incorporated as part of the JSP 2.0 specification and is entirely

independent of JSTL. However, it’s only with JSTL that it fully comes into its

own. EL can supply only the equivalent of the “right-hand side of the equal sign”

in a typical computing statement. For example, EL lacks any looping constructs.

JSTL supplies the missing pieces, and hence EL used most often in conjunction

with JSTL.

62. How can you enable EL?

a. Expression Language can be enabled or disabled in three different ways.

i. The page directive attribute isELEnabled can turn on EL for a single

page—or not.

ii. The <jsp-propertygroup> element, which has a subelement <el-enabled>.

The <jsppropertygroup> element is the subelement of <jsp-config>.

iii. EL is enabled at an application level by having a deployment descriptor at

servlet level 2.4. A previous deployment descriptor level indicates that EL

should be switched off.

63. Give the syntax of EL usage and its importance?

a. An expression begins with ${ and ends with }. The part between the curly braces

must be a valid EL expression. The string in the JavaServerPage source code is

subject to translation, like anything else in the page. Translation checks syntax

validity but won’t check that the variables you use actually exist (remember that

translation incorporates compilation).

14
www.JavaJee.com

b. At run time, the string representing the expression is sent to a method called

resolveVariable(), in an object supplied by your JSP container provider of type

VariableResolver. This returns an object, which is sent to the JSP output stream—

typically via an out.print() statement in your generated servlet source. Mostly, the

expression will resolve one way or another. Even if your variables don’t exist,

sensible defaults are provided, which mostly prevent the expression ending in a

run-time error. EL is equally valid in standard JSP syntax or JSP document

(XML) syntax.

64. Will the below syntax work?

<% request.setAttribute("anAttribute", ${aValueFromEL});

a. No, it won’t work. You do have to keep Java code (such as scriptlets) free of EL

(after all, EL is not valid Java syntax).

65. What do you know about EL Literals?

a. EL has a smaller range of literals than Java. The ones it does use are similar. The

different values are Boolean, Integer, floating point, Strings and null. Because you

don’t declare variables or assign to variables in EL, there are no explicit keywords

for types; nonetheless, there are five that are defined.

66. List down the types of operators in EL?

a. EL operators (like EL literals) offer a subset of what’s available in the Java

language:

iv. Arithmetic

1. There are five arithmetic operators—for addition (+), subtraction (-

), multiplication (*), division (/), and modulo (%). As you can see,

the operator symbols are identical to Java. However, there are

alternative forms for the division and modulo operators—div and

mod, respectively.

v. Relational

1. EL has a full complement of relational operators, which have

conventional and alternate forms. Alternative forms exist to make

writing JSP documents that much easier. For example Greater than

can be ‘>’ or gt. To avoid having to use escape sequences such as

15
www.JavaJee.com

>= every time you want to express “greater than or equals” in

an expression, use ge instead. e.g ${9 ge 3}. The result of a

relational operation is boolean true or false. Under the covers, the

String equals() method is invoked rather than a straight comparison

of objects. In general, EL relational evaluation will invoke useful

comparison methods on objects (such as equals() and

compareTo()) when they are appropriate and available.

vi. Logical

1. EL has a more limited set of logical operators than the Java

language. There is a symbolic and alternative form. Logical “and”

can be expressed as ‘&&’ and ‘and’. These operators allow you to

join conditional tests together to return a composite boolean result.

For example, ${9 > 3 && "z" gt "a"} would return true. Like Java,

EL will evaluate only the left-hand side of an expression involving

&& and ||, if that is sufficient to intuit the overall result.

vii. Empty

1. EL’s empty operator can be invoked like this: ${empty obj}. This

expression will evaluate to true if obj represents something null—

as would happen if the obj attribute didn’t exist. There are other

circumstances where ${empty obj} results in true, which is any of

the following:

a. obj is an empty string (“”).

b. obj is an empty array.

c. obj is an empty Map or an empty Collection.

67. Describe the addition operation in EL?

a. Addition is expressed like this: ${a + b}. If either of attributes a and b doesn’t

exist, and is null, that’s not a problem—they are treated as zero values. A zero-

length string—“”—is likewise treated as zero. The addition operator in EL—

unlike Java—is not overloaded to handle string concatenation. The following

calculation won’t work: ${"Not a Number" + 3.0}. You will get a

16
www.JavaJee.com

javax.servlet.jsp.el.ELException, complaining that “Not a Number” cannot be

converted to a java.lang.Double value.

68. How is the Subtraction expressed in EL?

a. Subtraction is expressed as: ${a — b}.

69. How is the Multiplication expressed in EL?

a. Multiplication is expressed ${a * b}.

70. Describe the division operation in EL?

a. Division is expressed ${a / b} or ${a div b}. Even if the inputs are both integers,

double division is performed. There is no direct EL equivalent for Java’s integer

division behavior.

b. Being as EL division is always double division, it behaves like Java floating

decimal division, so divide by zero is not an error but results in an answer of

“Infinity.”

71. Describe the modulo operation in EL?

a. Modulo is expressed ${a % b} or ${a mod b}. This time, unlike, division, integers

are respected as integers, but a double for either input causes the calculation to be

worked as a double.

72. Are the precedence rules same for EL and normal java?

a. For all the operators— arithmetic, relational, logical—the precedence rules work

in the same way as for the equivalent operators in the Java language. Parentheses

can (and should) be used to clarify potential misinterpretations of code.

Expressed crudely, the order is as follows:

i. not, empty;

ii. multiplication, division, modulo;

iii. addition, subtraction;

iv. relational;

v. and, or.

73. How can you access maps, arrays and lists in EL?

a. EL can access properties on beans with the dot operator (.) or square brackets([]).

Similarly EL can access a map to get the value with the dot operator (.) or square

brackets([]). When using the square brackets([]) syntax the bracket should either

17
www.JavaJee.com

contain a key literal or an attribute which contain the key literal. EL can access

items in arrays or java.util.List objects with square brackets.

b. ${appl.properties.name} will execute appl.getProperties() and get the value for a

key ‘name’ from the Map returned. ${appl.properties[prop]} will execute

appl.getProperties() and get the value for a key which is the value of the attribute

prop from the Map returned.

74. Describe the use of the ‘.’ and [] Operators for accessing object properties?

a. For using EL to display the properties of an object, object has to be a JavaBean—

at least in the sense of having “getter” methods for those properties. Then we can

access the properties using either a ‘.’ or ‘[]’ Operator.

vi. ${currentDog.name}

vii. ${currentDog["name"]}

b. You’re not limited to one level, either. You can get the properties of objects

within objects:

viii. ${currentDog.father.name}

ix. ${currentDog["father"]["name"]}

c. You can even mix and match double quotes and single quotes, as long as you are

consistent within any particular pair of square brackets.

x. ${currentDog["father"]["name"]}

xi. ${currentDog['father']['name']}

xii. ${currentDog[“father”]['name']}

75. Give output and explain:

xiii. <% String[] dayArray = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat",

"Sun"};

xiv. pageContext.setAttribute("days", dayArray); %>

xv. <% pageContext.setAttribute("two", new Integer(2));

xvi. pageContext.setAttribute("three", "3"); %>

xvii. ${days[two]}

xviii. ${days[three]}

a. It would output “Wed Thu”:

18
www.JavaJee.com

a. The first page attribute, called “two,” is set to an Integer with a value of 2.

So ${days[two]} gets the third value in the array—“Wed.”

b. The second page attribute, called “three,” still works when loaded with a

String, provided that a method like Integer.parseInt() can extract an int

value from the String.

76. What will happen if we have an array of 5 values and we call ${days[7]}?

a. EL silently suppresses this problem—you just get blank output. Even if you use

an attribute name that doesn’t exist—${days[notAnAttributeName]}—nothing

goes wrong; you just get blank output.

77. Given this page attribute, <% pageContext.setAttribute(“four”, “the_Word_Four”); %>

the expression ${days[four]} would result in what output?

a. This would end in a run-time error (ELException). This is because the attribute

b. supplied is a valid attribute but can’t be converted to an integer value. However if

you use an attribute name that doesn’t exist—${days[notAnAttributeName]}—

nothing goes wrong; you just get blank output.

78. Give output:

xix. <jsp:directive.page import="java.util.*" />

xx. <% Map longDays = new HashMap();

xxi. longDays.put("WED", "Wednesday");

xxii. longDays.put("THU", "Thursday");

xxiii. longDays.put("FRI", "Friday");

xxiv. longDays.put("SAT", "Saturday");

xxv. pageContext.setAttribute("longDays", longDays);

xxvi. pageContext.setAttribute("wed", "WED");

xxvii. %>

xxviii.
 ${longDays[wed]}

xxix.
 ${longDays["THU"]}

xxx.
 ${longDays.FRI}

a. The output from this code is

a. Wednesday

b. Thursday

19
www.JavaJee.com

c. Friday

b. In general terms, expressions accessing a Map work on this principle:

${nameOfMap[keyValue]}. It doesn’t matter if the key value is a literal (“THU”)

or derived from an attribute (wed). If you use a Map’s key value as if it were a

property name on a bean, you will still find the corresponding value.

79. What are EL Implicit Objects?

a. It has its own set of implicit objects. All the EL implicit objects, with the

exception of pageContext, are of type java.util.Map. The available implicit objects

are pageContext, pageScope, requestScope, sessionScope, applicationScope,

param, paramValues, header, headerValues, cookie, initParam.

80. Describe the use of pageScope, requestScope, sessionScope, and applicationScope

implicit objects of EL?

a. These implicit objects are used to access attributes in a given scope. If you want

to target only a session scope attribute, then ${sessionScope.myAttribute} will do

the trick. All the alternative Map syntaxes will work as well—

${applicationScope["myAttribute"]} to find the attribute in application scope, for

example.

81. If you call an attribute like ${myAttribute} which scope will it refer to?

a. Under the covers, PageContext.find("myAttribute") is used to search all scopes

through page, request, session, and application, stopping when it finds an attribute

of the right name.

82. Let’s suppose that your HTTP header request contains the following query string:

?myParm=firstValue&myParm=secondValue. Let’s also suppose this is a GET request,

so there are no additional parameter values for myParm hidden in a POSTed request

body. What would be the result of ${param.myParm} and ${paramValues.myParm[1]}

and paramValues["myParm "][1] and ${param.myParm[1]}?

a. The result of ${param.myParm} is “firstValue.” The result of

${paramValues.myParm[1]} and paramValues["myParm "][1] is “secondValue.”.

However ${param.myParm[1]} will throw exception.

b. The implicit object param can be used solely to access the first value of a

parameter.

20
www.JavaJee.com

c. paramValues returns all the values associated with a named ServletRequest

parameter as a Map. To get on the values array for the key num, we can either use

the dot operator based syntax (paramValues. myParm) or the square bracket based

syntax (paramValues["myParm "]). And then use the square bracket based syntax

on the array of values (paramValues.myParm[1] or paramValues["myParm "][1]).

d. EL implicit object param returns the first value associated with a named

ServletRequest parameter as a String. We cannot have an array operation on that.

It will throw exception.

83. Describe the initParam implicit object of EL?

a. This is used to access ServletContext initialization parameters, whose values are

available across the entire web application. The syntax is exactly as for param, so

${initParam.myParm} is used to return the value of an initialization parameter

named “myParm.”

84. Which of the below syntax is correct for an EL:

xxxi. ${cookie.JSESSIONID.value}

xxxii. ${cookie["JSESSIONID"].value}

xxxiii. ${cookie["JSESSIONID"]["value"]}

a. All are correct.

85. Briefly describe the cookie implicit object of EL?

a. A cookie object is a map of HttpServletRequest cookie names and cookie objects.

So cookie names will be the keys and cookie objects will be the values. So we can

use the EL map syntax as cookie.cookieName to retrieve a value.

86. Suppose that I set up a page attribute called “header”; then ${header} would refer to the

implicit object header or page attribute?

a. An implicit object name always takes precedence. Even if I set up a page attribute

called “header”; ${header} would still refer to the implicit object header, not my

page attribute (or attribute in any other scope, come to that).

87. What is the significance of using type attribute in <jsp:useBean> without the class

attribute?

21
www.JavaJee.com

a. Using type in <jsp:useBean> without the class attribute relies on the fact that the

bean has already been created. You cannot use type attribute alone while creating

a bean.

88. What is the significance of using type attribute along with class attribute in

<jsp:useBean>?

a. A <jsp:useBean> with class and type attributes instantiates a bean from the class

named in class and assigns the bean the data type you specify in type. The value

of type can be the same as class, a superclass of class, or an interface

implemented by class.

89. What is the significance of having a set of <jsp:setProperty> elements inside the body of

a <jsp:useBean> ?

a. The presence of a body a set of <jsp:setProperty> elements signifies the below:

i. If the bean doesn’t exist, it will be created, and the <jsp:setProperty> tags

will execute to set up some default values.

ii. If bean exists already, it will be left alone, and the <jsp:setProperty> tags

will not execute, so any property values already set will remain

unchanged.

90. Can we have a <jsp:useBean> with scope = session and without any scope with same id

in the same JSP file?

a. No. Specifying the scope attribute creates or uses an attribute in the specified

session and make it available as a local variable in the page scope with that name.

So we cannot have two variables with same name in page scope and hence all ids

for <jsp:useBean> should be unique.

91. More notes

a. The xmlns attribute is required in XHTML but it is invalid in HTML.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

